A constructive approach
to translatability of view updates

Enrico Franconi and Paolo Guagliardo

KRDB Research Centre, Free University of Bozen-Bolzano, Italy

Abstract In this article, we revisit the view update framework by Ban-
cilhon and Spyratos in a setting with constraints expressed in first-order
logic. We explicitly consider constraints on both the database and the
view schemas, along with inter-schema constraints that implicitly define
the view mappings. Using the notion of logical definability we give a con-
structive characterisation of views, their inverses and complements, and
provide an effective method for checking whether an arbitrary first-order
expressible view update can be (uniquely) translated under the constant
complement principle.

1 Introduction

Views are employed in a number of different areas, such as schema simplification,
data integration, query optimisation, data restructuring, just to mention a few.
Querying views does not pose particular problems, as it simply reduces to query
unfolding. On the other hand, updating views is much harder, because it requires
finding suitable ways of propagating an update from the view to the underlying
database, so that by refreshing the content of the view from the updated version
of the database the changes on the view are reflected exactly.

The task of “translating” a view update into a database update is non-trivial
and poses several challenges. The most subtle kind of update anomaly is given by
changes not directly wanted nor explicitly made by the user, originating in the
view as a “side-effect”. An additional difficulty is represented by the fact that
there can be more database updates corresponding to a given update on the view.
Lastly, yet another complication concerns updates that modify the database even
though this is not required in order to reflect the changes made on the view.

Related Work

A general and precise understanding of the view update problem is due to the
seminal work [1] by Bancilhon and Spyratos, who devise an abstract framework
in which they formalise the problem and provide an elegant solution to it. They
introduce the fundamental notion of view complement, representing what is miss-
ing from a view in order to have the same informative content of the underlying
database. Moreover, they introduce the constant complement principle, stating
that the changes done on a view must not influence the content of its complement
during the translation process. Bancilhon and Spyratos provide no constructive
characterisation of their approach, stating that “computational algorithms (if



they exist) must be sought in specific problems: for example, schemata defined
by functional dependencies and views derived by projections”. Most of the sub-
sequent work on view updates is centred on the framework [1] and, in particular,
its application to the relational model.

Cosmadakis and Papadimitriou [4] consider a restricted setting that consists
of a single database relation, in which views are just projections over the attrib-
utes of such a “universal” relation. They give necessary and sufficient conditions
for the translatability of insertions, deletions and replacements under constant
complement and they also study the complexity of finding a suitable complement
that makes a given update translatable. Even though an effective method based
on the Chase is provided for checking translatability, it is only applicable in the
very limited setting consisting of a single database relation with projective views
and functional and join dependencies at the database level.

In the context of SQL databases, Lechtenborger [7,8] gives a characterisation
of the constant complement principle in terms of undo operations, showing that
view updates are translatable under constant complement precisely if users have
the chance to undo all effects of their updates using further view updates. It is
then argued that testing whether this holds could be an alternative to checking
whether users can observe all effects of their updates in the view schema, but no
effective method for doing so is proposed.

Gottlob et al. [5] extend the results of Bancilhon and Spyratos to the class of
so-called consistent views, which properly contains the class of views translating
under constant complement. The main difference between the two is that, during
the translation of an update on a consistent view, the complement is not required
to remain invariant, but it is allowed to “decrease” according to a suitable partial
order. Indeed, in the case in which the partial order is the equality, the framework
coincides with the one in [1]. Also in this generalised framework, no constructive
characterisation and effective methods for checking the translatability of updates
and computing their translations are provided.

Contribution and Outline

In [1], Bancilhon and Spyratos deal with constraints only implicitly and just at
the database level. We revisit their framework by considering explicit constraints
on both the database and the view schemas, as well as arbitrary inter-schema
constraints defining the relationship between the two. All of the constraints are
expressed as a theory in first-order logic.

In the present article, we introduce the concept of view under constraints, we
give a constructive characterisation, based on logical definability, of such views,
their inverses and complements, and we provide an effective method for testing
whether a first-order expressible view update can be translated under constant
complement.

The rest of the paper is organised as follows: in Sec. 2 we introduce the neces-
sary notation and other basic definitions; in Sec. 3 we study the injectivity and
surjectivity of views and characterise view updates that are uniquely translatable
on views defined by injective mappings; in Sec. 4 we extend the results presented



for injective views to the case of translation under constant complement; finally,
we conclude in Sec. 5 by pointing out some future research directions.

2 Preliminaries

An n-ary relation on a set A, where n € N is called the arity of the relation, is a
subset of the Cartesian product A™, that is, a set of n-tuples of elements of A. A
signature consists of a finite set o of relation symbols and a function ar: ¢ — N
associating each relation symbol r € ¢ with a natural number n = ar(r) called
the arity of r. For the sake of simplicity we will identify a signature with its set
of relation symbols, each of which is considered to have an implicitly associated
arity.

A relational structure I over a signature o is a pair (AZ,-T), where AT is
a (possibly infinite) domain of objects and - is a function that associates each
symbol r € o with a relation 7% on AZ, called the extension of r, of appropriate
arity (that is, if 7 is an n-placed relation symbol, then rZ is an n-ary relation).
For every relational structure Z with domain A, we assume the interpretation
function -Z to be from A to the set P(A) UP(AZ) U --- U P(A%>®), where P(A)
denotes the powerset of A. Given a relational structure Z over o, its restriction
to a subset ¢’ of ¢ is the relational structure Z|,, obtained from Z by restricting
its interpretation function to the relation symbols in ¢’. For relational structures
T={(A,T)and J = (A,-7) over two disjoint signatures o and o', respectively,
TWwJ = (A, ZU-7) is a relational structure over o U o”’.

A constraint is a closed first-order logic formula ¢. We denote by sig(¢) the
set of relation symbols occurring in ¢ and we say that ¢ is over a signature o if
sig(p) C 0. We extend sig(+) to sets of constraints in the natural way. Given two
disjoint signatures o and ¢’ and a finite set X of constraints over o U o', we say
that a relation symbol r € o is implicitly defined by the relation symbols in ¢’
under ¥ if and only if, for every two X-models Z and J such that AT = A7 we
have that 77 = 77 whenever Z|,s = J|,. We say that r € o is explicitly defined
by the relation symbols in ¢’ under X if and only if there exists a first-order
logic formula ¢,.(T) over o’ with as many free variables as the arity of r and such
that ¥ = (VZ . 7(Z) = ¢,(Z)). The formula ¢, (%) is called an explicit definition
(or simply definition) of r with respect to o’ under X.

Clearly, if a relation symbol r € ¢ has an explicit definition w.r.t. ¢’ under
constraints X, then r is also implicitly defined by ¢’ under X', because fixing the
interpretation of the relation symbols in ¢’ determines the interpretation of r. In
other words, explicit definability always implies implicit definability. In general,
the converse does not hold, that is, knowing that a certain symbol is implicitly
defined by some other ones does not mean that we can (constructively) find an
explicit definition of it in terms of those symbols. For first-order logic (FOL), a
fundamental result by Beth [2] establishes that this is actually the case.

THEOREM (Beth’s Definability). Let o and o’ be disjoint signatures, and let X
be a finite set of constraints over c Ua’. If r € o is implicitly definable from o’
under X, then v has an explicit definition with respect to o’ under X. O



Note, however, that the above does not hold for all fragments of first-order logic,
because even though a FOL explicit definition is always guaranteed to exist, this
might not belong to the particular fragment under consideration. Fragments that
are known to have the Beth’s definability property are, for instance, the Guarded
Fragment [6] and the Packed Fragment [9]. Other languages, even beyond first-
order logic, are studied in [10]. In this paper, we consider constraints expressed in
FOL, for which it is possible to effectively check for implicit definability and for
which explicit definitions can be constructively obtained by means of rewriting
techniques based on interpolation, e.g., as described in [3]. So, by reducing our
problem to checking implicit definability and computing explicit definitions, we
have found a constructive solution to it.

A renmaming over a signature o is a bijective function ren: ¢ — ¢’, where ¢’ is
a signature disjoint from o. We extend ren(-) to signatures, relational structures
and (sets of) constraints in the natural way. For instance, given a constraint ¢,
ren(y) is obtained by replacing in ¢ every occurrence of each relation symbol
r € sig(¢p) with ren(r). Clearly, for a set X' of constraints over o and a relational
structure Z over ren(o), we have that Z = ren(X) iff ren=1(Z) E 2.

A database schema is a signature R = {Ry,..., R, } of database symbols and
a view schema is a signature V={V1, ..., Vi } of view symbols not occurring in R.
A database state is a relational structure over R and a view state is a relational
structure over V. We denote the sets of all database and view states by S and
T, respectively. For a database state s € S and a view state t € T having the
same domain, the relational structure s Wt is called a global state over R U V.

We consider a satisfiable finite set X of global constraints over the signature
R U V. Since R and V are disjoint, X' is partitioned into subsets X'z, Xy and
Y — (XrUXYy,), which we call the database constraints, the view constraints and
the inter-schema constraints, respectively. A database state s (resp., view state
t) is X-consistent iff there exists a view state ¢ (resp., database state s) with the
same domain such that sWt is a model of 3. We denote the set of X-consistent
database states (resp., view states) by Sy (resp., Tx;). When a specific X is not
mentioned explicitly, we refer to X-consistent states as globally consistent states
or states that are consistent with the global constraints.

The central notion used throughout the present article is that of view under
constraints, defined as a function associating each globally consistent database
state with a globally consistent view state with the same domain and such that
the global state resulting from their union is a model of the constraints.

DEFINITION 1 (View under constraints). A view from R to V under X is a total
mapping f: Sy — T such that sW f(s) | X for every s € Sx. [ |

The above naturally extends with explicit constraints the definition of view used
by Bancilhon and Spyratos. Indeed, when only database constraints are present,
the two notions essentially coincide, although in [1] constraints (at the database
level) are considered only implicitly.

We write R —x V to indicate that every V € V is implicitly definable from
R under constraints X. In addition, we also use V -5 R, R4V and V4R
with the obvious meaning. Since R and V are disjoint, every model of X has the



form sWt, where s € S and t € T are (globally consistent) states with the same
domain. Therefore, we can give the following characterisation of definability in
terms of states.

DEFINITION 2. We say that R defines V under X' (written R — 5 V) if and only
if, for every s € S and t,t' € T, whenever sWt = X and sWt | X, it is the
case that t = t'. [ |

There is an important connection between definability and views under con-
straints, consisting in the fact that the database symbols can be defined in terms
of the view symbols under certain constraints iff a view mapping satisfying such
constraints is unique.

THEOREM 1. R —»x V iff there is one and only one view from R toV under X.

Proof. We will show that there exist two distinct views from R to V under X' if

and only if R 45 V.

“if” Assume R - V, then for some s € Sy there are t',t" € Tx, with ¢/ #t”
such that sWt’ and sWt” are models of Y. Therefore, we can construct two
views f’ and f” such that f/'(s) =t and f"(s) =t".

“only if” Let f and f’ be such that f(s) # f/(s) for some s € Sx. Then, both
s f(s) and s f’(s) are models of X, hence R -, V. O

The above theorem gives a characterisation of the views that are expressible by
means of constraints in FOL. In what follows, we write R ﬁ»fz V to indicate that
R —x V and f is the (one and only) view induced by the constraints X from R
to V. Every function f can be made surjective by restricting its codomain to its
image: we call the resulting function the surjection induced by f or the surjective
restriction of f. We use concatenation to indicate composition, e.g., fg denotes
the composition of f with g.

3 The View Update Problem

In this section, we formally state the problem of view update, by reviewing and
adapting some of the “classical” definitions given in [1] to our logic-based setting
with constraints.

A database update is a function d: S — S that associates each database state
with another, possibly the same. Similarly, a view update is a function u: T"— T
associating each view state with another, possibly the same. We denote by Ugr
and Uy, the sets of all database and view updates, respectively. An update u € Uy,
is called strict on f iff there exists t € f(Sx) such that u(¢t) # t. In other words,
a strict update does not coincide with the identity mapping on the image of f.
The set of all the updates that are strict on f is denoted by Uy.

Given a view under constraints and a view update, we want to find a suitable
database update that propagates the changes to the base relations in a consistent
way. More specifically, the view update should be translated as a database up-
date that brings the database into a new state from which, by applying the view
definition, we reach exactly the updated view state. In addition, we also want to
avoid unjustified and unnecessary changes in the database, in the sense that if



the view update does not modify the view state, then the database update must
not modify the corresponding database state. These requirements are formalised
below (cf. Definition 3.1 in [1]).

DEFINITION 3 (Translation). Let f be a view from R to V under X, let d € Ug
and u € Uy. We say that d is a translation of u (w.r.t. f) iff
(1) uf = fd; and (consistent)
(2) Vs € S5, uf(s) = f(s) = d(s) =s. (acceptable) B

A translation of a given update on a view f can only exist if the updated view
state lies in the image of f; otherwise, there would be no chance of reaching the
new view state through f from some database state, which is what Definition 3
indeed requires. Hence, before we start looking for a translation, we should first
make sure that the given view update allows for one.

DEFINITION 4 (Translatability). Let f: Sy — Tx be a view from R to V under
Y. A view update u € Uy is translatable (w.r.t. f) if and only if for each s € Sy,
there exists s’ € Sy such that f(s") = uf(s). |

Note that the condition of translatability given in Definition 4 is equivalent to
saying that u is translatable iff u(f(Sx)) C f(Sx).

Translatability of view updates ensures that there is a translation, but does
not rule out the possibility that more than one might exist, which is problematic
because we would not know how to choose one. Therefore, we are only interested
in view updates that are uniquely translatable, that is, for which there exists one
and only one translation.

One of the factors contributing to the existence of multiple translations is the
loss of information that occurs when two distinct database states collapse into
the same view state, that is, when the view mapping is not injective. Intuitively,
if a view update results in a view state that is the image of two different database
states, we then have two different alternatives for “going back” to the database,
and therefore multiple ways of translating the update. However, there might be
uniquely translatable updates also on views that are not injective. In fact, even
in the presence of view states corresponding to more than one database state,
there is only one possible translation (if one does exist at all) as long as the view
update does not result in one of these “ambiguous” view states.!

When the view mapping is injective, a view update is translatable if and only
if it is uniquely translatable and the following theorem gives a characterisation
of its unique translation.

THEOREM 2. Let f be an injective view under X, let u € Uy be translatable and
let d € Ug. Let f denote the surjection induced by [ and let & be obtained from
u by restricting its domain and codomain to f(Sx).2Then, d is a translation of
u if and only if d = f‘lﬁf,

Proof. Special case of Theorem 5.5 and Theorem 5.6 in [1] when g = 0. O

1 We have a theorem stating this more precisely, but unfortunately we are forced to
omit it from the paper for space reasons.



In order to be able to apply the result of Theorem 2, we need to know, in the
first place, whether a view is injective. More importantly, once in the presence of
an injective view, we also need some way of computing the inverse of its surjective
restriction, so as to effectually obtain the unique translation of any translatable
view update. Therefore, below we study the injectivity and surjectivity of views
under constraints using logical definability, with the aim of giving a constructive
characterisation of their inverse.

LEMMA 1. Let f be a view from R to V under X and let V —%% R. Then, 1) f is
injective; 2) the restriction of h to the image of f is the inverse of the surjection
induced by f.

Proof.
1) Suppose f is not injective, that is, there are states s,s’ € Sy such that
s # s and f(s) = f(s'). Since f is a view under X, sW f(s) and s’ W f(s')
are models of X, in contradiction of ¥V —x R.
2) We show that hf(s) = s for every s € Sx. Let s € Sy and t = f(s). Since
fis a view under X, swWt = X. Now, let s’ = h(t) and suppose s’ # s.
As h is a view under X, also s’ Wt = X in contradiction of ¥V —x R. O

Note that in the above lemma, f can be any view under constraints. In the case
of a view induced by the constraints, we have the following:

LEMMA 2. Let R —x V and let f be the view from R toV induced by X. Then,
1) f is surjective; 2) f is injective if and only if V -5 R.

Proof.

1) Suppose f is not surjective, that is, there exist states s € Sy and t € Ty,
such that sW¢ is a model of X' but ¢ # f(s). Since f is a view under X,
also s f(s) = X, in contradiction of R —x V.

2) By Lemma 1, f is injective whenever V — 5 R, thus we just need to show
the “only if” part. The proof is by contraposition. Assume V- R, hence
there are X-models sWt and s’ Wt with s # s'. Since 5,8’ € Sy and f is
a view under X, s f(s) and s’ W f(s') are also models of X'. But then,
as R —»x V, we have f(s) =t = f(s). Therefore, f is not injective. O

Assuming the view to be induced by the constraints is a restriction almost always
satisfied in practise. In fact, a view is usually specified by providing an explicit
definition for each view symbol, in terms of the database symbols. For instance,
each (virtual) view table in SQL is defined by means of a named SELECT-query
over the database tables.

The following is an important consequence of Lemma 1 and Lemma 2, stating
that it is possible to invert a view induced by a set of constraints iff the database
symbols are implicitly defined by the view symbols under the same constraints,
in which case the inverse is also effectively computable. In such a situation, the
constraints induce two views that are indeed one the inverse of the other.

THEOREM 3. Let R —»fE V. Then, f is invertible if and only if V —'% R, and in
such a case h = f~1. O

2 As u is assumed to be translatable, u(f(S’z)) C f(Sx).



The next step towards the application of Theorem 2 is the translatability of
view updates, of which we give an interesting characterisation in what follows.
The general idea consists in imposing additional constraints on the view schema
so that every legal view update is translatable.

A consistent set of constraints over RUYV is R-defining iff it contains only for-
mulas, one for each R € R, of the form VZ(R(Z) = ¢r(T)), with sig(¢r(T)) C V.
Clearly, an R-defining set @ is such that V —»g R and induces a function 6 from
VY to R. Since © does not contain nor entail any database or view constraints,
every view state ¢t € T is ©-consistent and therefore in the domain of 6. We know
by Beth’s theorem that whenever V — 5 R there is an explicit definition for each
of the database symbols in terms of the view symbols, that is, the constraints
entail an R-defining set ©. In such a case, we call the V-embedding of X the set
Yy of view constraints obtained by replacing, for each R € R, every occurrence
of R(Z) in X with the definition ¢r(ZT) given in . The V-embedding of a set
X7 of global constraints is a set of view constraints having the same “restrictive-
ness” of the whole X, but with the advantage that they can be checked locally
on the view schema. Indeed, it turns out that a view state is X-consistent iff it
is a model of Xy, and this is of particular importance in the case of surjective
views.

THEOREM 4. Let f be a surjective view from R to V under X, let V —»x R and
let w € Uy. Then, u is translatable if and only if u(t) E Xy for every t € Tx.

Proof (sketch). Since V — 5 R, let © be the R-defining set entailed by X and let
0 denote the function induced by ©. Then, we have that 0(t) Wt = © for every
t € T. Hence, for every 1) € X, we have that 0(t) Wt = Vz (4(Z) = ¢/(T)), where
1)’ is obtained by replacing every occurrence in 1) of each database predicate with
the corresponding definition given in ©. As Xy is obtained through the same
substitution, we get that §(t)wt = X iff t = Xy, that is, t € T is X-consistent iff
it is a model of the V-embedding of Y. Since f is surjective, f(Sx) = T’x. There-
fore, u is translatable iff u(Tx) C T, that is, iff u(t) € Tx for every ¢t € Tz, and
u(t) € Ty iff u(t) = Dy O

Note that, under the assumptions of Theorem 4, every globally consistent view
state is in the image of the view and, moreover, satisfies the V-embedding of the
global constraints. Thus, the above result essentially says that we have to make
sure that, by updating a view state that is legal w.r.t. the embedded constraints,
we always end up in another legal view state.

Let ren be a renaming over R UV and let ren(V) = V'. Then, a V’'-defining
set = of constraints over VUV’ represents a view update. Indeed, the function £
induced by = takes a view state ¢ over V and returns an updated view state £(t)
over V'. The view update ezpressed by = is the function associating each t € T
with ren—! (f (t)) From Theorem 4, we then get the following characterisation of
the translatability of those view updates that are expressible, as described, by
means of a logical theory.

THEOREM 5. Let f be a surjective view from R toV under X, let V —x R and
let w € Uy, be expressed by =. Then, u is translatable iff Xy, U = E ren(ZV).



Proof (sketch). Let & denote the function induced by =. We have that tW&(t) =
Ev U Z for every ¢t € T's and that, vice versa, every model Z of f]v U Z is such
that Z = t W&(t) for some ¢t € Tx;. Then, Xy UE Eren(Xy) if T E Dy UZE
implies Z |= ren(X)) for every Z, which in turn is the case iff t W £(t) = ren(Zy)
for every ¢ € T;. Moreover, we have that tWE(t) |= ren(Ey) iff £(t) |= ren(Zy) iff
ren~t(£(1)) = Yy iff u(t) = Xy. Therefore, since (by assumption) f is surjective
and V —»x R, our claim follows from Theorem 4. O

Under the assumptions of the above theorem, the view f is injective by Lemma 1.
Hence, by Theorem 2 every translatable view update u has the unique translation
f~tuf. However, we might not be able to actually compute f~! unless R —x V,
in which case Theorem 3 ensures that the inverse of f is the view from V to R
induced by . When R -5 V, V —»x R and = expresses a translatable view
update u, we have that V — = ren(V) and ren(V) —eq(x) ren(R), therefore the
unique translation of u is the database update expressed by the set 7" such that
R —7 ren(R), obtained by replacing in ren(X') every occurrence of ren(V') with
its definition in terms of V and, in turn, every occurrence of V with its definition
in terms of R.

4 The View Complement

In the previous section, we presented a scenario in which injective views ensure
that for each translatable view update there is only one possible and acceptable
way of consistently propagating the changes towards the base relations through
a suitable database update. Since an injective view is lossless, in such a case the
update is essentially performed on a “restructured” copy of the whole database,
in the sense that the full informative content of the database is available also in
the view, though by means of a different schema. It is easy to imagine situations
in which this is not case, and sometimes even undesirable. For instance, consider
a (most common) scenario where user views are created in order to allow access
to specific portions of the database, keeping untouched the rest of the data that
is beyond the scope of the view. Since such views are lossy by design, the results
achieved in Sec. 3 are not directly applicable.

The lack of injectivity in a view causes loss of information due to the fact that
distinct database states are mapped to the same view state. In order to be able
to distinguish between distinct database states, we need some extra “hints” that,
combined with what is already known from the view itself, give a full account of
the database content. This additional information is provided by another view,
that takes the name of view complement, because it “complements” the partial
information of a lossy view.

For the rest of this section, let R, V and W be pairwise disjoint signatures,
and let X’ and I" be finite sets of constraints over RUY and RUW, respectively,
such that their union is consistent.

DEFINITION 5 (View complement). Let f be a view from R to V under X' and
let g be a view from R to W under I'. We say that g is a complement of f iff
(1) Sy, = Sr and (2) Vs, s’ € S, s £ 8 A f(s) = f(s) = g(s) # g(s). |



In other words, a complement of f is a view g operating on the same domain of
f and capable of distinguishing between distinct database states which f maps
to the same view state. Note that there exists at least one complement for every
view, namely the “identity” mapping over the whole database.

The idea of view complement was first introduced by Bancilhon and Spyratos
in [1]. Our definition is indeed based on their work (cf. Theorem 4.2 in [1]) with
the additional requirement that f and g must have the same domain, which has
to be explicitly enforced here as we are in a setting with views under constraints.
Since the notion of view complement is symmetric, in that g is a complement of
fiff fis a complement of g, we will sometimes simply say that two views f and
g are “complementary”.

Given two views f and g under constraints X and I, respectively, their union
is the function f W g associating each s € Sy N Spr with the state f(s) W g(s).
The union of f and g turns out to be a view under XU I" and, when f and g are
induced by their associated constraints, f & g is indeed induced by X' U I'. The
connection between complementarity and injectivity of views is given by the fact
that two views under constraints and with the same domain are complementary
if and only if their union is injective.

LEMMA 3. Let f be a view from R to V under X, let g be a view from R to W
under I' and let Sy, = Sp. Then, fWg is injective iff f and g are complementary.

Proof. Assuming Sy, = Sr, f and g are not complementary iff there exist s,s" €
Sy with s # ¢’ and such that f(s) = f(s") and g(s) = g(s). As f and g are views
under constraints, f(s) and g(s) are states with the same domain over disjoint
signatures, and so are f(s’) and g(s’). Therefore, we have that f(s) = f(s') and
g(s) = g(s') iff f(s)Wg(s)= f(s')Wg(s’), that is, iff fW g is not injective. O

Below we give a characterisation of complementarity between two views induced
by constraints in terms of logical equivalence and definability.

THEOREM 6; Let 7} —»fE V and R —% W. Then, f and g are complementary if
and only if Xr =I'r and VUW —xur R.3

Proof (sketch). Since s € S is X-consistent iff s = Yz and it is I'-consistent iff
s fn, we have Sy, = Sp iff E’R = fR. Moreover, it can be easily shown that
R —»J; V and R —% W together imply R —»fE%gF Y UW. Then, from Lemma 3,
f and g are complementary iff f ¥ g is injective, which by Lemma 2 is the case
if and only if VUW —gur R. O

Therefore, one way of finding a complement of a given view f induced by a set of
constraints X' consists in abducing another set of constraints I" consistent with
27 and satisfying the conditions of Theorem 6, which guarantees that the view
g induced by such a I' is indeed a complement of f.

Following the rationale that the only purpose for which a view complement
is made available is that of allowing for a lossy view to be updatable, we demand
that the information it provides be invariant during the update process. In other

3 ¥r and I'r denote the R-embeddings of X' and I', respectively.



words, view updates must never modify, neither directly nor indirectly, any data
that belongs to the view complement. Putting together translatability of updates
and invariance of the complement results in the formal notion given below (cf.
Definition 5.1 in [1]).

DEFINITION 6 (g-translatability). Let f be a view under X' and let g be a com-
plement of f. A view update u € Uy, is called g-translatable iff for each s € Sy
there exists s’ € Sx such that:
(1) f(s') =uf(s); and (translatability)
(2) g(s') =g(s). (constant complement) B

That is, a view update is g-translatable if it is translatable (according to Defini-
tion 4) and, in addition, leaves the complement g unchanged. For this reason, we
say that such an update is translatable under constant complement. In general,
there might be more than one complement of a given view, and an update is g-
translatable or not depending on the particular complement g we consider. Thus,
the choice of a complement defines an “update policy” by assigning unambiguous
semantics to the view updates.

The following theorem establishes an important relationship between trans-
latability w.r.t. a view under constant complement and translatability w.r.t. the
union of a view and its complement.

THEOREM 7. Let f and g be complementary, let uw € Uy and let v € Uy \ Uy.
Then, u is g-translatable w.r.t. f if and only if uWv is translatable w.r.t. fWg.

Proof. The update u W v is translatable w.r.t. f W g iff, for every s € Sy, there
exists s’ € Sy such that (f W g)(s’) = (uWv)((fWg)(s)). Since f and g have
disjoint codomains, this is the case iff f(s')Wg(s") = uf(s) Wvg(s) and, in turn,
iff f(s') =uf(s) and g(s’) = vg(s). As v is a non-strict update, it is the identity
on g(Sx), therefore vg(s) = g(s). O

This allows us to extend the result obtained for the translatability of updates
on injective views to the case of g-translatability.

THEOREM 8. Let R —»fE V, let R -9 W and let g be a complement of f. Let
I be the (VY UW)-embedding of XU ' and let ren be a renaming over R UV U
W. Let u € Uy be expressed by = and let {2 be the W-defining set such that
vz.W(z) = ren(W(f)) for each W € W. Then, u is g-translatable if and only
if T US U 2 = ren(ID).

Proof. Let w denote the function induced by §2. Clearly, z = ren™!(w(2)) for
every z € g(Sx), therefore {2 expresses an update v € Uyy \ Uy. By Theorem 7,
u is g-translatable w.r.t. f iff the update uWv expressed by Z'U {2 is translatable
w.r.t. fWg and, by Theorem 5, this is the case iff ITU Z U £2 = ren (H) (]

5 Conclusion and Future Work

We presented a framework for view update based on the notion of “view under
constraints”. On the one hand, such a framework “extends”—so to say—the one
of Bancilhon and Spyratos by adding explicit constraints also at the view level.



Indeed, when there are no inter-schema constraints nor constraints on the view
schema, the notion of view under constraints coincides with the notion of view
used in [1]. On the other hand, our framework is an instance of Bancilhon and
Spyratos’ abstract one, in that we essentially consider only view mappings that
are expressible by means of first-order logic constraints.

Using logical definability, we gave a constructive characterisation of when and
whether a view induced by a set of constraints is invertible, so as to being able to
effectively compute the (unique) translation of a view update that is translatable
and expressible in FOL. Indeed, we also provided an applicable method, based
on the Beth’s definability property and the idea of local “embedding” of the con-
straints, for testing whether a FO-expressible view update is translatable (under
constant complement). We have an experimental tool, based on a FOL theorem
prover, that checks for implicit definability and derives explicit definitions, and
so it can be used for testing the criterion of translatability we presented in this
paper and for computing the corresponding translation.

For what concerns future work, first we would like to formally show that the
setting considered in [4] by Cosmadakis and Papadimitriou is a special case of
our general framework and that their results on the translatability of insertions,
deletions and replacements can be derived with an instantiation of the method
we presented. Then, we want to study in some detail the connection with logical
abduction, that could be used for obtaining view complements and translatable
updates.
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